

INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN

THE INTERNET OF THINGS

17-18 October 2014 Beijing, China

*****MANIFESTO

Proceedings

2014 International Conference on Identification, Information and Knowledge in the Internet of Things IIKI 2014

17-18 October 2014 Beijing, China

Other Sponsors Beijing Normal University National Natural Science Foundation of China IEEE Communications Society Emerging Technical Committee in Internet of Things College of Information Science and Technology, Beijing Normal University Research Group on the Internet of Things, Beijing Normal University Chinese Institute of Electronics Manifesto Group Brunel University

Los Alamitos, California

Washington • Tokyo

Copyright © 2014 by The Institute of Electrical and Electronics Engineers, Inc.

All rights reserved.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries may photocopy beyond the limits of US copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or republication requests should be addressed to: IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 133, Piscataway, NJ 08855-1331.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Computer Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Computer Society Order Number E5402 BMS Part Number CFP14B18-ART ISBN-13: 978-1-4799-8003-1

Additional copies may be ordered from:

IEEE Computer Society Customer Service Center 10662 Los Vaqueros Circle P.O. Box 3014 Los Alamitos, CA 90720-1314 Tel: + 1 800 272 6657 Fax: + 1 714 821 4641 http://computer.org/cspress csbooks@computer.org IEEE Service Center 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 Tel: + 1 732 981 0060 Fax: + 1 732 981 9667 http://shop.ieee.org/store/ customer-service@ieee.org IEEE Computer Society Asia/Pacific Office Watanabe Bldg., 1-4-2 Minami-Aoyama Minato-ku, Tokyo 107-0062 JAPAN Tel: + 81 3 3408 3118 Fax: + 81 3 3408 3553 tokyo.ofc@computer.org

Individual paper REPRINTS may be ordered at: <reprints@computer.org>

Editorial production by Randall Bilof Art production by Mark J. Bartosik

IEEE Computer Society
Conference Publishing Services (CPS)
http://www.computer.org/cps

2014 International Conference on Identification, Information and Knowledge in the Internet of Things

IIKI 2014

Table of Contents

Message from the Conference Chairs	xi
Organizing and Program Committees	xii
Reviewers	xiv

Keynotes

IoT and the Need for High Performance Computing Didier El Baz	1
Wearable Internet: Powering Personal Devices with the Internet of Things Capabilities Antonio J. Jara	7
Distortion-driven Turbulence Image Blur Effect Removal using Variational Model and Kernel Regression	8

Session 1: Knowledge Engineering, Big Data, and Cloud Computing

An Anti-theft Electric Bicycle Tracking System Supporting Large-Scale Users Jun Zeng, Minbo Li, and Jia Liang	9
Chinese Social Media Analysis for Disease Surveillance Nanhai Yang, Xiaohui Cui, Cheng Hu, Weiping Zhu, and Chengrui Yang	17
A Novel Dynamic Weight Neural Network Ensemble Model Kewen Li, Wenying Liu, Kang Zhao, Weishan Zhang, and Lu Liu	22
Towards a High Speed Video Cloud Based on Batch Processing Integrated with Fast Processing Weishan Zhang, Liang Xu, Pengcheng Duan, Wenjuan Gong, Xin Liu, and Qinghua Lu	

An Improved SMOTE Imbalanced Data Classification Method Based	
on Support Degree	34
Kewen Li, Wenrong Zhang, Qinghua Lu, and Xianghua Fang	
Simulation and Evaluation of Decentralized SPARQL Query Processing Jing Zhou, Qi Huang, and Wei Yan	39
Chinese Temporal Relation Resolution Based on Chinese-English Parallel Corpus	45
Lubiao Li, Junsheng Zhang, Yanqing He, Yinsheng Zhang, and Huilin Wang	
Linear Programming v-Nonparallel Support Vector Machine Guangyu Zhu and Peng Zhang	51
Big Data Processing: Data Flow vs Control Flow (New Benchmarking Methodology)	56
Anton Kos, Sašo Tomažc; Jakob Salom, Nemanja Trifunovic, Mateo Valero, and Veljko Milutinovic	
Term Extraction Using Co-occurrence in Abstract and First Claim for Patent Analysis	60
Peng Qu, Junsheng Zhang, Yanqing He, Wen Zeng, and Hongjiao Xu	
A Short Survey on Decision Making for Task Migrations in Mobile Cloud Environments	64
Weishan Zhang, Shouchao Tan, and Klaus Marius Hansen	
A Cloud Based Object Recognition Platform for IOS Lianzhang Zhu, Xuexing Zheng, Pengfei Li, and Yong Wang	68
Online Multiperson Tracking and Counting with Cloud Computing Weishan Zhang, Wenshan Wang, Pengcheng Duan, Xin Liu, and Qinghua Lu	72
Enhancing Context-Aware Recommendation via a Unified Graph Model Hao Wu, Xiaoxin Liu, Yijian Pei, and Bo Li	76
Online Optimization of Collaborative Web Service QoS Prediction Based on Approximate Dynamic Programming	80
Xiong Luo, Hao Luo, and Xiaohui Chang	
A Node Localization Approach Using Particle Swarm Optimization in Wireless Sensor Networks	84
Xihai Zhang, Tianjian Wang, and Junlong Fang	
Enhanced Web Warehouse Model: A Secure Approach Rashid Mehmood, Maqbool Uddin Shaikh, Liran Ma, and Rongfang Bie	88
Internet of Things Services for Small Towns Yunchuan Sun, Ye Xia, Houbing Song, and Rongfang Bie	92
Analysis of Erdös Collaboration Graph and the Paper Citation Network Chengrui Yang, Xiaohui Cui, Xiaoyong Sun, Yuanda Diao, Shuai Wang, and Cheng Hu	96

A Relational Model Based Semantic Network Knowledge Representation	
Technology and Its Application	100
Yuexin Li and Rong Xiao	
Research on Database Massive Data Processing and Mining Method	
based on Hadoop Cloud Platform	107
Dan Wu, Zhuorong LI, Rongfang Bie, and Mingquan Zhou	

Session 2: Pervasive Service Systems and Wearable Computing

Application of Inertial Navigation System in Portable Human Body Joint Power	
Test System	111
Lin Li, Zhongqiu Ji, Ye Xia, and Rui Gong	
Sensors Classification for Stress Analysis: Toward Automatic Stress	
Recognition	117
Mikhail Sysoev, Andrej Kos, Urban Sedlar, and Matevž Pogacnik	
Autonomous Wearable Personal Training System with Real-Time Biofeedback	
and Gesture User Interface	122
Anton Umek, Sašo Tomažic, and Anton Kos	
Robustness of Input Features from Noisy Silhouettes in Human Pose	
Estimation	126
Wenjuan Gong, Preben Fihl, Jordi Gonzalez, Thomas B. Moueslund,	
Weishan Zhang, Zhen Li, and Yan Ren	
The Research on Sports Events Organization and Management Information	
System Based on Process Aware	132
Yunchao Ma and Zhongqiu Ji	

Session 3: Wireless and Mobile Security

An Encryption Depth Optimization Scheme for Fully Homomorphic Encryption Liquan Chen, Hongmei Ben, and Jie Huang	137
Mining Call Spammers from Logs Zhipeng Liu and Weihua Duan	142
An Improved Multi-sensor Image Fusion Algorithm Zhuozheng Wang and John R. Deller	146
An Online Anomaly Learning and Forecasting Model for Large-Scale Service of Internet of Things <i>Junping Wang and Shihui Duan</i>	152
A Fast AES Encryption Method Based on Single LUT for Industrial Wireless Network	158
Xinqiang Luo, Yue Qi, Yadong Wan, Qin Wang, and Hong Zhang	

Privacy Information Security Classification Study in Internet of Things Xiaofeng Lu, Qi Li, Zhaowei Qu, and Pan Hui	162
Time Synchronization Attacks in IEEE802.15.4e Networks Wei Yang, Qin Wang, Yue Qi, and Shaobo Sun	166
A Fuzzy Operator-Attribute-Based Signcryption Scheme on Vehicular Clouds Zhang Wenbo, Yang Pengfei, Bao Zhenshan, Duan Lijuan, and Li Jian	170
Joint Social and Physical Clustering Scheme for Device-to-Device	
Communications	175
Chunyan Cao, Li Wang, and Mei Song	

Session 4: Frontiers in Cyber-Physical Systems

A Fuzzy Filter for Color Images Corrupted by Mixed Noise Xuan Guo and Baoping Guo	177
Towards a Genetic Algorithm Based Approach for Task Migrations Weishan Zhang, Shouchao Tan, Qinghua Lu, and Xin Liu	182
Virtual Power Meter Supported Power Consumption Prediction of Web Services	188
Jaming Jiang, Jinyang Liu, Lingteng Wei, Lei Lei, Jing Du, and Jin Liu The Study of MAC Protocol for Industrial Wireless Sensor Network Based on Ultra-wide Band <i>Wen Zeng, Junsheng Zhang, and Peng Qu</i>	194
Diffusion Dynamics in Structured Online Social Networks with Push-Based Forwarding Mechanism Pei Li, Fengcai Qiao, Yini Zhang, and Hui Wang	198
Impact of Structure Balance on Opinion Spreading in Signed Social Networks Pei Li, Su He, Yini Zhang, and Hui Wang	202
Planar Waypoint Generation and Path Finding in Dynamic Environment Daoyuan Jia, Cheng Hu, Kechen Qin, and Xiaohui Cui	206
A Computational Simulation Model for Understanding the Correlation of Climate Change and Population Migration <i>Cheng Hu, Liang Zhou, Xiaohui Cui, and Yang Zhang</i>	212
Cache-Based Periodic Query Optimization for Wireless Sensor Networks Deng Zhao, Zhangbing Zhou, Ke Ning, and Xiaolei Wang	216
An Orthogonal Cartesian Genetic Programming Algorithm for Evolvable Hardware Fuchuan Ni, Yuanxiang Li, Xiaoyan Yang, Fuchuan Ni, and Jinhai Xiang	220
Detection of Acute Hypotensive Episodes via Empirical Mode Decomposition and Genetic Programming	225

Dazhi Jiang, Liyu Li, Zhun Fan, and Jin Liu

A Random Factor Extension on the PSO Algorithm Huibin Zhang, Jie Lin, Yungang Wei, Laniun Duan, and Xiaoming Zhu	229
Subway Fire Evacuation Simulation Model Kechen Qin, Cheng Hu, Daoyuan Jia, Xiaohui Cui, and Yang Zhang	233
Session 5: Regulations, Standards, User Experience, and Industries in the Internet of Things	
Enterprise-Oriented IoT Name Service for Agriculture Product Supply Chain Management	237
Yi Liu, He Wang, Junyu Wang, Kan Qian, Ning Kong, Kaijiang Wang, Yiwei Shi, and Lirong Zheng	
Multiplex TDMA Link Assignment with Varying Number of Sensors in Industrial Wireless Sensor Networks Yanhong Yang and Shaozhong Cao	242
Patented Network Analysis on Cloud Computing Technology in Internet of Things Yu Yuan, Li Ma, and Junsheng Zhang	248
A MapReduce Enabled Simulated Annealing Genetic Algorithm Luokai Hu, Jin Liu, Chao Liang, and Fuchuan Ni	252
Study of Intelligent Instrument Data Acquisition and Transmission on Wireless Network <i>Huating Fu and Guofeng Qin</i>	256
Big and Small Data: The Fog Olga Ferrer-Roca, Ruben Tous, and Rodolfo Milito	260
Ladle Monitor System Based on Vehicle Distance Measurement and Auxiliary Judgment Rules <i>Cai Jun and Wang Hong-Bing</i>	262

Session 6: Mobile Opportunistic Networks

Implementing PMIPv6 Protocol Based on Extended Service Set for IEEE	
802.11 Infrastructure WLAN	266
Deqing Zhu, Lin Zu, Yi-Hua Zhu, and Xianzhong Tian	
Spacial Mobility Prediction Based Routing Scheme	
in Delay/Disruption-Tolerant Networks	274
Lichen Zhang, Zhipeng Cai, Junling Lu, and Xiaoming Wang	
Secure Friend Discovery Based on Encounter History in Mobile Social	
Networks	280
Hongjuan Li, Yingwen Chen, Xiuzhen Cheng, Keqiu Li, and Dechang Chen	

The Dissemination Distance of Mobile Opportunistic Networks	286
Xia Wang, Shengling Wang, Wenshuang Liang, Rongfang Bie, and Feng Zhao	
S-Disjunct Code Based MAC Protocol for Reliable Broadcast in Vehicular Ad Hoc Networks	291
Chao Wang, Xiumei Fan, Jiguo Yu, Kai Xing, Yingwen Chen, and Jiawei Liang	
Nodes Density Adaptive Opportunistic Forwarding Protocol for Intermittently	
Connected Networks	297
Xiaofeng Lu, Pietro Lio, Pan Hui, and Zhaowei Qu	
Reliability Evaluation of Coal Mine Internet of Things	301
Pan Kunkun and Li Xiangong	
Author Index	303

IEEE Computer Society Technical & Conference Activities Board

T&C Board Vice President

Cecilia Metra Università di Bologna, Italy

IEEE Computer Society Staff

Evan Butterfield, Director of Products and Services Lynne Harris, CMP, Senior Manager, Conference Support Services Patrick Kellenberger, Supervisor, Conference Publishing Services

IEEE Computer Society Publications

The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authoritative computer science and engineering texts. These books are available from most retail outlets. Visit the CS Store at *http://www.computer.org/portal/site/store/index.jsp* for a list of products.

IEEE Computer Society *Conference Publishing Services* (CPS)

The IEEE Computer Society produces conference publications for more than 300 acclaimed international conferences each year in a variety of formats, including books, CD-ROMs, USB Drives, and on-line publications. For information about the IEEE Computer Society's *Conference Publishing Services* (CPS), please e-mail: cps@computer.org or telephone +1-714-821-8380. Fax +1-714-761-1784. Additional information about *Conference Publishing Services* (CPS) can be accessed from our web site at: *http://www.computer.org/cps*

Revised: 18 January 2012

CPS Online is our innovative online collaborative conference publishing system designed to speed the delivery of price quotations and provide conferences with real-time access to all of a project's publication materials during production, including the final papers. The **CPS Online** workspace gives a conference the opportunity to upload files through any Web browser, check status and scheduling on their project, make changes to the Table of Contents and Front Matter, approve editorial changes and proofs, and communicate with their CPS editor through discussion forums, chat tools, commenting tools and e-mail.

The following is the URL link to the *CPS Online* Publishing Inquiry Form: http://www.computer.org/portal/web/cscps/quote 2014 International Conference on Identification, Information and Knowledge in the Internet of Things

Big and Small data The FOG.

Olga Ferrer-Roca Unesco Chair of Telemedicine. Faculty of Medicine. University of La Laguna. Tenerife. Spain. <u>catai@teide.net</u>

Ruben Tous

Abstract-

Health 4.0 applications in the IoE (Internet of Everything) framework generate and use both "Small Data", and "Big Data". While "Big Data" is processed in the Cloud, we advocate for "Small Data" to be processed in the Fog, which is an extension of the Cloud to the edge of the network (close to the IoT devices that stream private health-related information). Processing and storing Small Data close to the sources has enables tighter control of the data ownership, response time, and semi-autonomy require by critical applications.

Keywords—Small data; Health 4.0; mHealth; The Fog; The Cloud.

I. INTRODUCTION

The Global Health 2035 vision calls for Digital and Ubiquitous Health, and Equitable access. Realization of the vision requires the incorporation of advanced Big Data and Analytics techniques, including Data Mining and Machine Learning, making information the center piece of the advances. Natural questions emerge regarding the preservation of privacy, and keeping the control of the information in the hands of the patient. Towards these goals this paper proposes that the data generated by wearables and personal devices be processed and stored in the Fog.

II. CONCEPTS

A. Small data

Small Data refers to patient data. The patient, who is the owner of his/her data, must be in control of what is shared, with whom, for what purpose, and during which period. In general this data come from devices (medical or not) connected to Internet as part of the IoT (Internet of the Things) providing information that supports data of interest conducive to a healthy life.

B. Health 4.0

As defined in 2012 [1] Health 4.0 is the integrated health framework that incorporates four main innovations:1°.-Applications that meet three availability criteria: a) Anytime connections: On the move, indoors and outdoors, Barcelona Supercomputing Center (BSC) and the Universitat Politècnica de Catalunya(UPC) - BarcelonaTech Barcelona, Spain. <u>rtous@ac.upc.edu</u>

Rodolfo Milito

Senior Technical Leader CTAO. Fog computing platform. Cisco Systems. ConSentry networks. <u>romilito@cisco.com</u>

day-&-night. b)Anyplace connection: On the move, outdoors, indoors, at any PC. c) Anything connection: At any PC, H2H (human to human), H2T (human to thing), T2T (thing to thing). 2°.- Applications that include image enhancement & RFID readings to be use for: a) People by faces recognition and access to relevant information (home, work, medical, HER, PHR, medical schedule...). b) Object by use and by owner recognition. c) Food by principle content & by diet requirements. d) Medication by principle & by indication-contraindication. 3°.-Application that includes quality controlled Web 3.0 items such as: a) HCQ Health Care Quality: ISO 13485-ISO 2700 or security. b) 3S: Social-Semantic-Services. c) Cloud accessing (SAAS, pCloud or personal Cloud were the iPhone can be included). 4°.-Applications taking Web 4.0 items such as: a) KBL o Knowledge base learning, including literature base learning (LBL), Evidence Based learning (EBL), trial base learning (TBL), Image based learning (IBL) etc...b) OBE o Ouerv by example, including query by image (QBI) etc...c) CoLD or Cloud of link data with Artificial intelligence."

C. The Fog

Fog [3] extends Cloud resources (processing, compute, and networking) to the edge of the network. Through virtualization, the Fog enables the user to control his/her own data. The user determines the engagement policies of his/her PHA (personal health assistant), including what and with whom to share data, whom to associate (possibly including electric PHAs, e-PHAs) with the purpose to maintain a healthy life.

D. PHAs

The living Personal Health Assistants are highly trained nurses (e.g. midwives) capable to be informed and empathic, advice for every-day life, and to act as a coach. Their role goes well beyond the standard tasks of prescribing medicines and issuing orders. Nurses that handle the administrative complexity of healthcare delivery can also advise users on the use public and private care, on how to prevent complications, choose the best hospital, call an ambulance and prepare the entrance in emergency rooms, etc. PHAs follow well-designed protocols based on decision trees ("given this and that, take this course"). The protocols are based on Bayesian inference or Markovian models.

E. Intelli-agents and e-PHAs

Intelligent agents, judiciously trained on the patient Small Data, and rigorously tested and validated on the available Big Data, could eventually graduate to e-PHAs able to give recommendations in specific individual situations. The criterion for graduation should be to meet or exceed the performance of the live PHAs following the existing protocols. Rather than e-PHAs issuing rote recommendations we envision them delivering Knowledge on Demand (KoD) [6], based on the data stored in the Fog, and in respond to the stimuli of the diverse sensors that measure the individual and the environment.

III. SAHA (SMART AGENTS HEALTH ARENA)

The components of the system include avatars as embodiment of people, the Smart Agents Health Arena (SAHA) [4] as the environment in which the avatars and intelligent agents interact with the traditional professionals, medical devices and IoT in general in the health arena, including the Fog [7].

Some of this exists today although in a very primitive Health 2.0 or even analog form (see Fig 1)

Fig. 1. Existing avatars-http://sense.ly/ in http://sco.lt/4pv0KH.

A. Digital Health

Digital data is essential in Digital Health, this is the reason why we have to define also the type of data, for what is taken and to whom it belongs. See table I [8].

TABLE I. THE FOG AND THE SMALL DATA

	BIG DATA	SMALL DATA
Belongs to	Government/State	Individuals/Patient
Anonymized	YES	NO
Encrypted	NO	YES
Processed in	The Cloud	The Fog
Response	Months / Years	Minutes / On time
Obtained from	Institutions/EHRs	Sensors / At home / PHR ^a
Processed by	DB tools-DBaaS	Parallel C/e-Agents
Stored	By Govern/Distributed	By Individuals/ PHAs
Useful	for Decision makers	for Individuals

a. Personal Health Record

B. Global Health

Following the Lancet Global Health 2035 [1], our next generation will require not only to study but also to implement a secure digital health environment and a new way to provide medicine.

This include the possibility of de-localized treatment and follow up by Centers of Excellence spread all over the world, possibility that should be assume not only by private insurance but also by public health.

IV. CONCLUSIONS

In this new Healthcare delivery context empower citizens in their own health control and delivery in several front-ends: 1) Disease and complications prevention. 2) Healthy and happiest life. 3) Humanize health [10] providing PHAs. 4) Integrate primary and secondary care. 5) Improve healthcare resources. 6) Lower health cost and health demands from tertiary care. 7) Know the center of excellence for specific diseases.

Acknowledgment

We want to give a warm acknowledgment to all partner of the H2O project (Humanization of Healthcare) [10] that working together will be able to bring into the reality Global Health in a more humanitarian model.

References

- Global health 2035: a world converging within a generation. The Lancet, <u>Volume 382, Issue 9908</u>, Pages 1898 - 1955, 7 December 2013
- [2] O.Ferrer-Roca. "Health 4.0 in the i2i era" Intern J Reliable and Quality E-Healthcare, 1(1), 43-57, January-March 2012; <u>http://www.teide.net/catai/Health%204.0%20HD.pdf</u>.
- [3] F.Bonomi, R. Milito, J.Xhu, S.Addepalli, "Fog Computing and its Role in the Internet of Things,", SIGCOMM 2012, <u>http://conferences.sigcomm.org/sigcomm/2012/paper/mcc/p13.pdf</u>
- [4] R. Milito. F. Bonomi and P. Monclus. Architecture for Intelligent agents/avatars in Healthcare. CTECH Forum 2010. (not published)
- [5] D. Lake, Milito R., Morrow M. and Vangheese R: Internet of Things: Architectural framework for eHealth security. Journal of ICT, vol. 3&4,pp: 301-330, 2014, doi: 10.13052/jicts2245-800X.133
- [6] O.Ferrer-Roca, A.Figueredo, K.Franco, A.Cardenas. Telemedicine intelligent Learning. Ontology for agent technology. <u>Trans. on Adv.</u> <u>Res. Jul 2005, Vol 1, N. 2, 46-54</u>
- [7] O.Ferrer-Roca. (2014) Fog computing in Health 4.0. http://catai.net/blog/2014/05/fog-computing-in-health-4-0/
- [8] O. Ferrer-Roca. (2014) Big Data versus Small Data. <u>http://catai.net/blog/2014/06/big-data-versus-small-data/</u>
- [9] O. Ferrer-Roca. (2014) Artificial Intelligence in Health 4.0 <u>http://sco.lt/6ntTyz</u>
- [10] O. Ferrer-Roca (2014) Humanization of the Healthcare. Moving into the right direction. <u>http://sco.lt/5BfRdh</u>
- [11] R. Tous, J. Delgado, T. Zinkl, P. Toran, G. Alcalde, M. Goetz and O. Ferrer-Roca. <u>The Anatomy of an Optical Biopsy Semantic Retrieval</u> <u>System</u>. *IEEE Multimedia*. April-June 2012 (vol. 19 no. 2). pp. 16-27.